Kamis, 07 Juni 2012

PROTEKSI SISTEM TENAGA LISTRIK


ProTEKSI SISTEM TENAGA
LISTRIK
D
I
S
U
S
U
N
OLEH
NAMA: ARDINO SITINJAK
NIM :5113331002
FAKULTAS: TEKNIK

JURUSAN PENDIDIKAN TEKNIK ELEKTRO

UNIVERSITAS NEGERI MEDAN

KATA PENGANTAR
syalom…
Segala puji dan syukur   kepada Tuhan yesus kristus,atas segala karunia_Nya sehingga penulis dapat  menyelesaikan  tugas   ini sebagian persyaratan untuk memperoleh nilai yang bagus yang akan penulis raih ,dengan demikian penulis harus bekerja keras dalam penyelesaian tugas ini dan mendiskusikannya dengan teman-teman  agar lebih baik dan jelas.
Makalah ini merupakan salah satu mata pelajaran dan ilmu pengetahuan dasar yang harus dikuasai mahasiswa/I  yaitu sebagai bekal untuk menguasai bidang elektronika.
Dalam penyelesaian tugas ini  ,penulis menyadari tidak dapat belajar sendiri  tanpa bantuan dan dukungan dari beberapa pihak ,baik dari segi materi maupun spiritual.dengan penuh rasa hormat penulis menyampaikan rasa terimakasih yang sebesar-besarnya kepada ibunda tercinta.
Dikesempatan ini ucapan trimakahaasih juga penulis sampaikan kepada pihak yang memberikan tugas ini kepada saya yaitu bapak maju

















Medan , 4 juni  2012


                                                                                                         Penulis

Pengertian Proteksi Transmisi Tenaga Listrik


Pengertian proteksi transmisi tenaga listrik adalah adalah proteksi yang dipasang pada peralatan-peralatan listrik pada suatu transmisi tenaga listrik sehingga proses penyaluaran tenaga listrik dari tempat pembangkit tenaga listrik(Power Plant) hingga Saluran distribusi listrik (substation distribution) dapat disalurkan sampai pada konsumer pengguna listrik dengan aman.
Proteksi transmisi tenaga listrik diterapkan pada transmisi tenaga listrik agar jika terjadi gangguan peralatan yang berhubungan dengan transmisi tenaga listrik tidak mengalami kerusakan. Ini juga termasuk saat terjadi perawatan dalam kondisi menyala. Jika proteksi bekerja dengan baik, maka pekerja dapat melakukan pemeliharaan transmisi tenaga listrik dalam kondisi bertegangan. Jika saat melakukan pemeliharaan tersebut terjadi gangguan, maka pengaman-pengaman yang terpasang haurus bekerja demi mengamankan sistem dan manusia yang sedang melaukukan perawatan.
Transmisi tenaga listrik terbagi dalam beberapa kategori. Kategori yang pertama adalah transmisi dengan tegangan sebesar 500Kv. Ini merupakan transmisi yang sangat tinggi. Karena di Indonesia masih menggunakan sistem 500 kv. Kategori yang kedua adalah transmisi dengan tegangan sebesar 150 kv. Dan yang ketiga adalah transmisi 75 kv. Untuk dibawah 75 kv selanjutnya dinamakan dengan distribusi tenaga listrik.
Proteksi ini berbeda dengan pengaman. Jika pengaman suatu sistem berarti system tersebut tidak merasakan gangguan sekalipun. Sedangkan proteksi atau pengaman sistem, sistem merasakan gangguan tersebut namun dalam waktu yang sangant singkat dapat diamankan. Sehingga sistem tidak mengalami kerusakan akibat gangguan yang terlalu lama.

 

Dasar-Dasar Sistem Proteksi


Keandalan dan kemampuan suatu sistem tenaga listrik dalam melayani konsumen sangat tergantung pada sistem proteksi yang digunakan. Oleh sebab itu dalam perencangan suatu sistem tenaga listrik, perlu dipertimbangkan kondisi-kondisi gangguan yang mungkin terjadi pada sistem, melalui analisa gangguan.

Dari hasil analisa gangguan, dapat ditentukan sistem proteksi yang akan digunakan, seperti: spesifikasi switchgear, rating circuit breaker (CB) serta penetapan besaran-besaran yang menentukan bekerjanya suatu relay (setting relay) untuk keperluan proteksi.

Artikel ini akan membahas tentang karakter serta gangguan-gangguan dan sistem proteksi yang digunakan pada sistem tenaga listrik yang meliputi: generator, transformer, jaringan dan busbar.

Definisi Sistem Proteksi


proteksi sistem tenaga listrik adalah sistem proteksi yang dipasang pada peralatan-peralatan listrik suatu sistem tenaga listrik, misalnya generator, transformator, jaringan dan lain-lain, terhadap kondisi abnormal operasi sistem itu sendiri.

Kondisi abnormal itu dapat berupa antara lain: hubung singkat, tegangan lebih, beban lebih, frekuensi sistem rendah, asinkron dan lain-lain. (untuk jelasnya lihat artikel: "Keandalan dan Kualitas Listrik")
Dengan kata lain sistem proteksi itu bermanfaat untuk:
1. menghindari ataupun untuk mengurangi kerusakan peralatan-peralatan akibat gangguan (kondisi abnormal operasi sistem). Semakin cepat reaksi perangkat proteksi yang digunakan maka akan semakin sedikit pengaruh gangguan kepada kemungkinan kerusakan alat.
2. cepat melokalisir luas daerah yang mengalami gangguan, menjadi sekecil mungkin.
3. dapat memberikan pelayanan listrik dengan keandalan yang tinggi kepada konsumen dan juga mutu listrik yang baik.
4. mengamankan manusia terhadap bahaya yang ditimbulkan oleh listrik.

Pengetahuan mengenai arus-arus yang timbul dari berbagai tipe gangguan pada suatu lokasi merupakan hal yang sangat esensial bagi pengoperasian sistem proteksi secara efektif. Jika terjadi gangguan pada sistem, para operator yang merasakan adanya gangguan tersebut diharapkan segera dapat mengoperasikan circuit-circuit Breaker yang tepat untuk mengeluarkan sistem yang terganggu atau memisahkan pembangkit dari jaringan yang terganggu. Sangat sulit bagi seorang operator untuk mengawasi gangguan-gangguan yang mungkin terjadi dan menentukan CB mana yang dioperasikan untuk mengisolir gangguan tersebut secara manual.

Mengingat arus gangguan yang cukup besar, maka perlu secepat mungkin dilakukan proteksi. Hal ini perlu suatu peralatan yang digunakan untuk mendeteksi keadaan-keadaan yang tidak normal tersebut dan selanjutnya menginstruksikan circuit breaker yang tepat untuk bekerja memutuskan rangkaian atau sistem yang terganggu. Dan peralatan tersebut kita kenal dengan relay.

Ringkasnya proteksi dan tripping otomatik circuit-circuit yang berhubungan, mempunyai dua fungsi pokok:
1. Mengisolir peralatan yang terganggu, agar bagian-bagian yang lainnya tetap beroperasi seperti biasa.
2. Membatasi kerusakan peralatan akibat panas lebih (over heating), pengaruh gaya-gaya mekanik dst.

"Koordinasi antara relay dan circuit breaker(CB) dalam mengamati dan memutuskan gangguan disebut sebagai sistem proteksi".

Banyak hal yang harus dipertimbangkan dalam mempertahankan arus kerja maksimum yang aman. Jika arus kerja bertambah melampaui batas aman yang ditentukan dan tidak ada proteksi atau jika proteksi tidak memadai atau tidak efektif, maka keadaan tidak normal dan akan mengakibatkan kerusakan isolasi. Pertambahan arus yang berkelebihan menyebabkan rugi-rugi daya pada konduktor akan berkelebihan pula, sedangkan pengaruh pemanasan adalah sebanding dengan kwadrat dari arus:

H = 1kwadrat.R.t Joules

Dimana;
H = panas yang dihasilkan (Joule)
I = arus listrik (ampere)
R = tahanan konduktor (ohm)
t = waktu atau lamanya arus yang mengalir (detik)

Proteksi harus sanggup menghentikan arus gangguan sebelum arus tersebut naik mencapai harga yang berbahaya. Proteksi dapat dilakukan dengan Sekering atau Circuit Breaker.

Proteksi juga harus sanggup menghilangkan gangguan tanpa merusak peralatan proteksi itu sendiri. Untuk ini pemilihan peralatan proteksi harus sesuai dengan kapasitas arus hubung singkat “breaking capacity” atau Repturing Capacity.

Disamping itu, sistem proteksi yang diperlukan harus memenuhi persyaratan sebagai berikut:
1. Sekering atau circuit breaker harus sanggup dilalui arus nominal secara terus menerus tanpa pemanasan yang berlebihan (overheating).
2. Overload yang kecil pada selang waktu yang pendek seharusnya tidak menyebabkan peralatan bekerja.
3. Sistem Proteksi harus bekerja walaupun pada overload yang kecil tetapi cukup lama, sehingga dapat menyebabkan overheating pada rangkaian penghantar.
4. Sistem Proteksi harus membuka rangkaian sebelum kerusakan yang disebabkan oleh arus gangguan yang dapat terjadi.
5. Proteksi harus dapat melakukan “pemisahan” (discriminative) hanya pada rangkaian yang terganggu yang dipisahkan dari rangkaian yang lain yang tetap beroperasi.

Proteksi overload dikembangkan jika dalam semua hal rangkaian listrik diputuskan sebelum terjadi overheating. Jadi disini overload action relatif lebih lama dan mempunyai fungsi inverse terhadap kwadrat dari arus.

Proteksi gangguan hubung singkat dikembangkan jika action dari sekering atau circuit breaker cukup cepat untuk membuka rangkaian sebelum arus dapat mencapai harga yang dapat merusak akibat overheating, arcing atau ketegangan mekanik.

Persyaratan Kualitas Sistem Proteksi

Ada beberapa persyaratan yang sangat perlu diperhatikan dalam suatu perencanaan sistem proteksi yang efektif, yaitu:
a). Selektivitas dan Diskriminasi
Efektivitas suatu sistem proteksi dapat dilihat dari kesanggupan sistem dalam mengisolir bagian yang mengalami gangguan saja.
b). Stabilitas
Sifat yang tetap inoperatif apabila gangguan-gangguan terjadi diluar zona yang melindungi (gangguan luar).
c). Kecepatan Operasi
Sifat ini lebih jelas, semakin lama arus gangguan terus mengalir, semakin besar kemungkinan kerusakan pada peralatan. Hal yang paling penting adalah perlunya membuka bagian-bagian yang terganggu sebelum generator-generator yang dihubungkan sinkron kehilangan sinkronisasi dengan sistem. Waktu pembebasan gangguan yang tipikal dalam sistem-sistem tegangan tinggi adalah 140 ms. Dimana dimasa mendatang waktu ini hendak dipersingkat menjadi 80 ms sehingga memerlukan relay dengan kecepatan yang sangat tinggi (very high speed relaying).

d). Sensitivitas (kepekaan)
Yaitu besarnya arus gangguan agar alat bekerja. Harga ini dapat dinyatakan dengan besarnya arus dalam jaringan aktual (arus primer) atau sebagai prosentase dari arus sekunder (trafo arus).
e). Pertimbangan ekonomis
Dalam sistem distribusi aspek ekonomis hampir mengatasi aspek teknis, oleh karena jumlah feeder, trafo dan sebagainya yang begitu banyak, asal saja persyaratan keamanan yang pokok dipenuhi. Dalam suatu sistem transmisi justru aspek teknis yang penting. Proteksi relatif mahal, namun demikian pula sistem atau peralatan yang dilindungi dan jaminan terhadap kelangsungan peralatan sistem adalah vital.
Biasanya digunakan dua sistem proteksi yang terpisah, yaitu proteksi primer atau proteksi utama dan proteksi pendukung (back up).
f). Realiabilitas (keandalan)
Sifat ini jelas, penyebab utama dari “outage” rangkaian adalah tidak bekerjanya proteksi sebagaimana mestinya (mal operation).
g) Proteksi Pendukung
Proteksi pendukung (back up) merupakan susunan yang sepenuhnya terpisah dan yang bekerja untuk mengeluarkan bagian yang terganggu apabila proteksi utama tidak bekerja (fail). Sistem pendukung ini sedapat mungkin indenpenden seperti halnya proteksi utama, memiliki trafo-trafo dan rele-rele tersendiri. Seringkali hanya triping CB dan trafo -trafo tegangan yang dimiliki bersama oleh keduanya. Tiap-tiap sistem proteksi utama melindungi suatu area atau zona sistem daya tertentu. Ada kemungkinan suatu daerah kecil diantara zo na -zona yang berdekatan misalnya antara trafo-trafo arus dan circuit breaker-circuit breaker tidak dilindungi. Dalam keadaan seperti ini sistem back up (yang dinamakan, remote back up) akan memberikan perlindungan karena berlapis dengan zona-zona utama.

Pada sistem distribusi aplikasi back up digunakan tidak seluas dalam sistem tansmisi,cukup jika hanya mencakup titik-titik strategis saja. Remote back up akan bereaksi lambat dan biasanya memutus lebih banyak dari yang diperlukan untuk mengeluarkan bagian yang terganggu.

Komponen-Komponen Sistem Proteksi

Secara umum, komponen-komponen sistem proteksi terdiri dari:
1. Circuit Breaker, CB (Sakelar Pemutus, PMT)
2. Relay
3. Trafo arus (Current Transformer, CT)
4. Trafo tegangan (Potential Transformer, PT)
5. Kabel kontrol
6. Catu daya, Supplay (batere)


Jenis-jenis relai

Berdasarkan cara kerja

  1. Normal terbuka. Kontak sakelar tertutup hanya jika relai dihidupkan.
  2. Normal tertutup. Kontak sakelar terbuka hanya jika relai dihidupkan.
  3. Tukar-sambung. Kontak sakelar berpindah dari satu kutub ke kutub lain saat relai dihidupkan.
  4. Bila arus masuk Pada gulungan maka seketika gulungan,maka seketika gulungan akan berubah menjadi medan magnet.gaya magnet inilah yang akan menarik luas sehingga saklar akan bekerja

Berdasarkan konstruksi

  1. Relai menggrendel. Jenis relai yang terus bekerja walaupun sumber tenaga kumparan telah dihilangkan.
  2. Relai lidi. Digunakan untuk pensakelaran cepat daya rendah. Terbuat dari dua lidi feromagnetik yang dikapsulkan dalam sebuah tabung gelas. Kumparan dililitkan pada tabung gelas.

Jenis- Jenis Relay Proteksi dan fungsinya


Sistem proteksi memiliki komponen utama yaitu Relay, jenis-jenis relay ini dapat di gunakan pada system pembangkitan, transmisi tenaga listrik, system distribusi dll.

Adapun jenis-jenisnya adalah sbb :


No
Nama Relay
Fungsi Relay
1
Relay jarak (distance relay)
Untuk mendeteksi gangguan 2 fasa atau 3 fasa di muka generator sampai batas jangkauannya.
2
Relay periksa sinkron
Pengaman Bantu generator untuk mendeteksi persaratan sinkronisasi (parallel).
3
Relay tegangan kurang (under voltage relay)
Mendeteksi turunnya tegangan sampai dibawah harga yang di izinkan (relay ini bekerja apabila sebelum rele loss of field bekerja)
4
Relay daya balik (reverse power relay)
Untuk mendeteksi daya balik, sehingga mencegah generator bekerja sebagai motor.
5
Relay kehilangan medan penguat
Untuk mendeteksi kehilangan medan penguat generator.
6
Relay fasa urutan negatif
Untuk mendeteksi arus urutan negatif yang disebabkan oleh beban tidak seimbang pada batas-batas yang tidak diizinkan
7
Relay arus lebih seketika (over current relay instanteneous)
Untuk mendeteksi besaran arus yang melebihi batas yang ditentukan dalam waktu seketika.
8
Relay arus lebih dengan waktu tunda (time over current relay)
Untuk mendeteksi besaran arus yang melebihi batas dalam waktu yang diizinkan.
9
Relay penguat lebih (over excitation relay)
Untuk mendeteksi penguat lebih pada generator.
10
Relay tegangan lebih
bila terpasang di titik netral generator atau trafo tegangan yang di hubungkan segitiga terbuka untuk mendeteksi gangguan stator hubungan tanah.
bila terpasang pada terminal generator untuk mendeteksi tegangan lebih.
11
Relay keseimbangan tegangan (voltage balanced relay)
Untuk mendeteksi hilangnya tegangan dari trafo tegangan pengatur tegtangan otomatis (AVR dan relay).
12
Relay waktu (time delay)
Untuk memperlambat waktu.
13
Relay stator gangguan tanah (stator ground fault relay)
Untuk mendeteksi kondisi a sinkron pada generator yang sudah paralel dengan sistem.
14
Relay kehilangan sinkronisasi (out of step relay)
Untuk mendeteksi kondisi a sinkron pada generator yang sudah paralel dengan sistem.
15
Relay pengunci (lock out relay)
Untuk menerima signal trip dari relay-relay proteksi dan kemudian meneruskan signal trip ke PMT, alarm dan peralatan lain serta mengunci.
16
Relay frekuensi (frekuensi relay)
Mendeteksi besaran frekuensi rendah/lebih di luar harga yang diizinkan.
17
Relay diferensial (diferensial relay)
Untuk mendeteksi gangguan hubungan singkat pada daerah yang diamankan.

Definisi

Relay adalah sebuah saklar elekronis yang dapat dikendalikan dari rangkaian elektronik lainnya. Relay terdiri dari 3 bagian utama, yaitu:
  1. koil         : lilitan dari relay
  2. common  : bagian yang tersambung dengan NC(dlm keadaan normal)
  3. kontak    : terdiri dari NC dan NO

Tentang Relay

Membedakan NC dengan NO:
NC(Normally Closed) : saklar dari relay yang dalam keadaan normal(relay tidak diberi tegangan) terhubung dengan common.
NO(Normally Open) : saklar dari relay yang dalam keadaan normal(relay tidak diberi tegangan) tidak terhubung dengan common.

Bagian-bagian relay dapat diketahui dengan 2 cara, yakni:
  1. dengan cara melihat isi dalam relay tersebut
  2. dengan menggunakan multimeter (Ohm)
Hubungkan common dan NO jika menginginkan rangkaian ON ketika koil diberi tegangan.
Hubungkan common dan NC jika menginginkan rangkaian ON ketika koil tidak diberi tegangan.
Description: relay_138x180

Jenis-jenis Relay

  • SPST - Single Pole Single Throw.
  • SPDT - Single Pole Double Throw. Terdiri dari 5 buah pin, yaitu:(2) koil, (1)common, (1)NC, (1)NO.
  • DPST - Double Pole Single Throw. Setara dengan 2 buah saklar atau relay SPST.
  • DPDT - Double Pole Double Throw. Setara dengan 2 buah saklar atau relay SPDT.
  • QPDT - Quadruple Pole Double Throw. Sering disebut sebagai Quad Pole Double Throw, atau 4PDT. Setara dengan 4 buah saklar atau relay SPDT atau dua buah relay DPDT. Terdiri dari 14 pin(termasuk 2 buah untuk koil).


Description: relay_symbols_90x180

GANGGUAN PADA SISTEM TENAGA LISTRIK

Description: 480VArcFlash1
Arc Flash. Salah satu bentuk Gangguan











Gangguan – Gangguan Pada Sistem Tenaga Listrik
Gangguan yang terjadi pada system tenaga listri sangat beragam besaran dan jenisnya. Gangguan dalam sistem tenaga listrik adalah keadaan tidak normal dimana keadaan ini dapat mengakibatkan terganggunya kontinuitas pelayanan tenaga listrik. Secara umum klasifikasi gangguan pada system tenaga listrik disebabkan oleh 2 faktor, yaitu:
1. Gangguan yang berasal dari system
2. Gangguan yang berasal dari luar system

Penyebab gangguan yang berasal dari dalam sistem antara lain :
1. Tegangan dan arus abnormal.
2. Pemasangan yang kurang baik.
3. Kesalahan mekanis karena proses penuaan
4. Beban lebih.
5. Kerusakan material seperti isolator pecah, kawat putus, atau kabel cacat isolasinya.


Sedangkan untuk gangguan yang berasal dari luar sistem antara lain[13]:
1. Gangguan-gangguan mekanis karena pekerjaan galian saluran lain. Gangguan ini terjadi untuk sistem kelistrikan bawah tanah.
2. Pengaruh cuaca seperti hujan, angin, serta surja petir. Pada gangguan surja petir dapat mengakibatkan gangguan tegangan lebih dan dapat menyebabkan gangguan hubung singkat karena tembus isolasi peralatan ( breakdown ).
3. Pengaruh lingkungan seperti pohon, binatang dan benda-benda asing serta akibat kecerobohan manusia.

Bila ditinaju dari segi lamanya waktu gangguan, maka dapat dikelompokkan menjadi :
  1. Gangguan yang bersifat temporer, yang dapat hilang dengan sendirinya atau dengan memutuskan sesaat bagian yang  terganggu dari sumber tegangannya. Gangguan sementara jika tidak dapat hilang dengan segera, baik hilang dengan  sendirinya maupun karena bekerjanya alat pengaman dapat berubah menjadi gangguan permanen.
  2. Gangguan yang bersifat permanen, dimana untuk membebaskannya diperlukan tindakan perbaikan dan/atau  menyingkirkan penyebab gangguan tersebut.
Untuk gangguan yang bersifat sementara setelah arus gangguannya terputus misalnya karena terbukanya circuit breaker oleh rele pengamannya, peralatan atau saluran yang terganggu tersebut siap dioperasikan kembali. Sedangkan pada gangguan permanen terjadi kerusakan yang bersifat permanen sehingga baru bisa dioperasikan kembali setelah bagian yang rusak diperbaiki atau diganti.

Pada saat terjadi gangguan akan mengalir arus yang sangat besar pada fasa yang terganggu menuju titik gangguan, dimana arus gangguan tersebut mempunyai harga yang jauh lebih besar dari rating arus maksimum yang diijinkan, sehingga terjadi kenaikan temperatur yang dapat mengakibatkan kerusakan pada peralatan listrik yang digunakan.

Sebab – Sebab Timbulnya Gangguan pada Sistem Tenaga Listrik
Dalam sistem tenaga listrik tiga fasa, gangguan–gangguan arus lebih yang mungkin terjadi adalah sebagai berikut yaitu :


a.  Gangguan beban lebih (overload)
Gangguan ini sebenarnya bukan gangguan murni, tetapi bila dibiarkan terus menerus berlangsung dapat merusak peralatan listrik yang dialiri arus tersebut. Pada saat gangguan ini terjadi arus yang mengalir melebihi dari kapasitas peralatan listrik dan pengaman yang terpasang.

b. Gangguan hubung singkat
Gangguan hubung singkat dapat terjadi dua fasa, tiga fasa, satu fasa ke tanah, dua fasa ke tanah, atau 3 fasa ke tanah. Gangguan hubung singkat ini sendiri dapat digolongkan menjadi dua kelompok yaitu gangguan hubung singkat simetri dan gangguan hubung singkat tak simetri (asimetri). Gangguan yang termasuk dalam hubung singkat simetri yaitu gangguan hubung singkat tiga fasa, sedangkan gangguan yang lainnya merupakan gangguan hubung singkat tak simetri (asimetri). Gangguan ini akan mengakibatkan arus lebih pada fasa yang terganggu dan juga akan dapat mengakibatkan kenaikan tegangan pada fasa yang tidak terganggu.

Hampir semua gangguan yang terjadi pada sistem tenaga listrik adalah gangguan tidak simetri. Gangguan tidak simetri ini terjadi sebagai akibat gangguan hubung singkat satu fasa ke tanah, gangguan hubung singkat dua fasa, atau gangguan hubung singkat dua fasa ke tanah.

Gangguan-gangguan tidak simetri akan menyebabkan mengalirnya arus tak seimbang dalam sistem sehingga untuk analisa gangguan digunakan metode komponen simetri untuk menentukan arus maupun tegangan di semua bagian sistem setelah terjadi gangguan. Gangguan ini akan mengakibatkan arus lebh pada fasa yang terganggu dan juga akan dapat mengakibatkan kenaikan tegangan pada fasa yang tidak terganggu. Gangguan dapat diperkecil dengan cara pemeliharaannya.

Adapun akibat-akibat yang ditimbulkan dengan adanya gangguan hubung singkat tersebut antara lain:
  1. Rusaknya peralatan listrik yang berada dekat dengan gangguan yang disebabkan arus-arus yang besar, arus tak seimbang maupun tegangan-tegangan rendah.
  2. Berkurangnya stabilitas daya system tersebut.
  3. Terhentinya kontinuitas pelayanan listrik kepada konsumen apabila gangguan hubung singkat tersebut sampai mengakibatkan bekerjanya CB yang biasa disebut dengan pemadaman litrik.
c. Gangguan tegangan lebih
Gangguan tegangan lebih diakibatkan karena adanya kelainan pada sistem. Gangguan tegangan lebih dapat terjadi antara lain karena :
- gangguan petir
- gangguan surja hubung, di antaranya adalah penutupan saluran tak serempak pada pemutus tiga fasa, penutupan kembali saluran dengan cepat, pelepasan beban akibat gangguan, penutupan saluran yang semula tidak masuk sistem menjadi masuk sistem, dan sebagainya.
Macam-macam Gangguan

Description: fault

I. Gangguan Beban Lebih
Beban lebih mungkin tidak tepat disebut sebagai gangguan. Namun karena beban lebih adalah suatu keadaan abnormal yang apabila dibiarkan terus berlangsung dapat membahayakan peralatan, jadi harus diamankan, maka beban lebih harus ikut ditinjau.
Beban lebih dapat terjadi pada trafo atau pada saluran karena beban yang dipasoknya terus meningkat, atau karena adanya maneuver atau perubahan aliran beban di jaringan setelah adanya gangguan. Beban lebih dapat mengakibatkan pemanasan yang berlebihan yang selanjutnya panas yang berlebihan itu dapat mempercepat proses penuaan atau memperpendek umur peralatan listrik.
II. Gangguan Hubung Singkat (Short Circuit)

Gangguan hubung singkat dapat terjadi antara fasa (3 fasa atau 2 fasa) atau antara 1 fasa ke tanah, dan dapat bersifat temporair (non persistant) atau permanent (persistant). Gangguan yang permanent misalnya hubung singkat yang terjadi pada kabel, belitan trafo atau belitan generator karena tembusnya (break downnya) isolasi padat. Gangguan temporair misalnya akibat flashover karena sambaran petir, pohon, atau tertiup angin.
Gangguan hubung singkat dapat merusak peralatan secara termis dan mekanis. Kerusakan termis tergantung besar dan lama arus gangguan, sedangkan kerusakan mekanis terjadi akibat gaya tarik-menarik atau tolak-menolak.
Keterangan

III. Gangguan Tegangan Lebih

Tegangan lebih dapat dibedakan sebagai berikut :
  • Tegangan lebih dengan power frequency
  • Tegangan lebih transient

Tegangan lebih transient dapat dibedakan :
  • Surja Petir (Lightning surge)
  • Surja Hubung (Switching surge)

Timbulnya tegangan lebih dengan power frequency, dapat terjadi karena :
  • Kehilangan beban atau penurunan beban di jaringan akibat switching,  karena gangguan atau karena maneuver.
  • Gangguan pada AVR (Automatic Voltage Regulator) pada generator atau pada on load tap changer dari trafo.
  • Over speed pada generator karena kehilangan beban.

IV. Gangguan Kurangnya Daya

Kekurangan daya dapat terjadi karena tripnya unit pembangkit (akibat gangguan di prime movernya atau di generator) atau gangguan hubung singkat di jaringan yang menyebabkan kerjanya relay dan circuit breakernya yang berakibat terlepasnya suatu pusat pembangkit dari sistem. Jika kemampuan atau tingkat pembebanan pusat atau unit pembangkit yang hilang atau terlepas tersebut melampaui spinning reverse system, maka pusat-pusat pembangkit yang masih ada akan mengalami pembebanan yang berkelebihan sehingga frequency akan merosot terus, yang bila tidak diamankan akan mengakibatkan tripnya unit pembangkit lain (cascading) yang selanjutnya dapat berakibat runtuhnya (collapse) sistem (pemadaman total).



V. Gangguan Ketidakstabilan (Instability)

Gangguan hubung singkat atau kehilangan pembangkit dapat menimbulkan ayunan daya (power swing) atau yang lebih hebat dapat menyebabkan unit-unit pembangkit lepas sinkron (out of synchronism). Power swing dapat menyebabkan relay pengaman salah kerja yang selanjutnya menyebabkan gangguan yang lebih luas. Lepas sinkron dapat mengakibatkan berkurangnya pembangkit karena tripnya unit pembangkit tersebut atau terpisahnya sistem, yang selanjutnya dapat menyebabkan gangguan yang lebih luas bahkan runtuh (collapse).

Upaya Mengatasi Gangguan

Dalam sistem tenaga listrik, upaya untuk mengatasi gangguan dapat dilakukan dengan cara :
I. Mengurangi Terjadinya Gangguan

Gangguan tidak dapat dicegah sama sekali, tapi dapat dikurangi kemungkinan terjadinya sebagai berikut :
  • Peralatan yang dapat diandalkan adalah peralatan yang minimum memenuhi persyaratan standart yang dibuktikan dengan type test, dan yang telah terbukti keandalannya dari pengalaman. Penggunaan peralatan di bawah mutu standart akan merupakan sumber gangguan.
  • Penentuan spesifikasi yang tepat dan design yang baik sehingga semua peralatan tahan terhadap kondisi kerja normal maupun dalam keadaan gangguan, baik secara elektris, thermis maupun mekanis.
  • Pemasangan yang benar sesuai dengan design, spesifikasi dan petunjuk dari pabrik.
  • Penggunaan kawat tanah pada SUTT/SUTET dengan tahanan pentanahan kaki tiang yang rendah. Untuk pemeriksaan dan pemeliharaan, maka konduktor pentanahannya harus dapat dilepas dari kaki tiangnya.
  • Penebangan atau pemangkasan pohon-pohon yang berdekatan dengan kawat fasa SUTM dan SUTT harus dilakukan secara periodik. Dalam hal ini yang perlu diperhatikan tidak hanya jaraknya dalam keadaan tidak ada angin, melainkan juga dalam keadaan pohon-pohon tersebut ketika ditiup angin.
  • Penggunaan kawat atau kabel udara berisolasi untuk SUTM harus dipilih dan digunakan secara selektif.
  • Operasi dan pemeliharaan yang baik.
  • Menghilangkan atau mengurangi penyebab gangguan atau kerusakan melalui penyelidikan.

II. Mengurangi Akibat Gangguan

Menghilangkan gangguan sama sekali dalam suatu sistem tenaga listrik merupakan usaha yang tidak mungkin dapat dilakukan. Oleh karena itu maka usaha yang dapat dilakukan adalah mengurangi akibat kerusakan yang ditimbulkannya. Usaha-usaha yang dapat dilakukan adalah :
  • Mengurangi besarnya arus gangguan. Untuk mengurangi arus gangguan dapat dilakukan dengan cara : menghindari konsentrasi pembangkitan (mengurangi short circuit level) menggunakan reaktor dan menggunakan tahanan untuk pentanahan netralnya.
  • Penggunaan lighting arrester dan penentuan tingkat dasar isolasi (BIL) dengan koordinasi isolasi yang tepat.
  • Melepaskan bagian sistem yang terganggu dengan menggunakan circuit breaker dan relay pengaman.
  • Mengurangi akibat pelepasan bagian sistem yang terganggu dengan cara :
  1. Penggunaan jenis relay yang tepat dan penyetelan relay yang selektif agar bagian yang terlepas sekecil mungkin.
  2. Penggunaan saluran double.
  3. Penggunaan automatic reclosing.
  4. Penggunaan sectionalizer pada JTM.
  5. Penggunaan spindle pada JTM atau setidak-tidaknya ada titik pertemuan antar saluran sehingga ketika ada kerusakan atau pemeliharaan tersedia alternative supply untuk maneuver.
  6. Penggunaan peralatan cadangan.
  • Penggunaan pola load shedding dan sistem splitting untuk mengurangi akibat kehilangan pembangkit.
  • Penggunaan relay dan circuit breaker yang cepat dan AVR dengan response yang cepat pula untuk menghindari atau mengurangi kemungkinan gangguan instability (lepas sinkron).



 

Proteksi Generator dan Jenis-jenis Pengamannya

Description: ANd9GcQIM9DRtG8kJf2qJfGEyHGl5OYilhv67F3iF1MiEaQW21B8FcVMra6YYD_e
Mesin-mesin dengan rancangan terbaru pada umumnya jarang sekali mengalami gangguan, hal ini disebabkan karena adanya penggunaan bahan-bahan bermutu tinggi, teknis pengerjaan dan pengendalian mutu yang lebih baik, jika dibanding dengan mesin-mesin buatan terdahulu. Walaupun demikian kemungkinan terjadinya gangguan tidak dapat dihindarkan. Gangguan dapat menyebabkan kerusakan pada mesin yang sedang dioperasikan dan biasanya akan diikuti dengan …

Description: Related Posts Plugin for 
WordPress, Blogger...Sistem Proteksi Generator

Proteksi untuk gangguan dari dalam generator * Differential Relay: untuk melindungi generator dari gangguan akibat hubung singkat(short circuit) antar fasa. * Stator Ground Fault Relay:untuk mendeteksi gangguan pentanahan/grounding pada generator *Loss of Field Relay: untuk mendeteksi kehilangan medan penguatan yang menyebabkan over heating pada kumparan stator dan arus Eddy(Eddy Current) pada kumparan rotor. * Voltage

PERAN  GENERATOR  DALAM  SISTEM  DAN  SYARAT  PROTEKSI GENERATOR

Sebagai sumber energi listrik dalam suatu sistem tenaga, generator memiliki peran yang penting, sehingga tripnya PMT/CB generator sangat tidak dikehendaki karena sangat mengganggu sistem, terutama generator yang berdaya besar. Dan juga karena letaknya di hulu, PMT/CB generator tidak boleh mudah trip tetapi juga harus aman bagi generator, walaupun didalam sistem banyak terjadi gangguan
   Untuk menjaga keandalan dari kerja generator, maka dilengkapilah generator dengan peralatan-peralatan proteksi. Peralatan proteksi generator harus betul-betul mencegah kerusakan generator, karena kerusakan generator selain akan menelan biaya perbaikan    mempertimbangkan pula proteksi bagi mesin penggeraknya, karena generator digerakkan oleh mesin penggerak mula.


GANGGUAN GENERATOR

Gangguan Generator relatif jarang terjadi karena:
a. Instalasi Listrik tidak terbuka terhadap lingkungan, terlindung terhadap petir dan tanaman.
b. Ada Transformator Blok dengan hubungan Wye-Delta, sehingga mencegah arus (gangguan) urutan nol dari Saluran Transmisi masuk ke Generator.
c. Instalasi Listrik dari Generator ke Rel umumnya memakai Cable Duct yang kemungkinannya mengalami gangguan kecil.
d. Tripnya PMT Generator sebagian besar (lebih dari 50%) disebabkan oleh gangguan mesin penggerak generator.

Namun ada juga gangguan-gangguan yang sering terjadi pada generator, meliputi gangguan pada :
Stator
Rotor (Sistem Penguat)
Mesin Penggerak
Back up instalasi di luar Generator



Pengaman terhadap gangguan luar generator

Generator umumnya dihubungkan ke rel (busbar). Beban dipasok oleh saluran yang dihubungkan ke rel. Gangguan kebanyakan ada di saluran yang mengambil daya dari rel.
Instalasi penghubung generator dengan rel umumnya jarang mengalami gangguan. Karena rel dan saluran yang keluar dari rel sudah mempunyai proteksi sendiri,
maka proteksi generator terhadap gangguan luar cukup dengan relay arus lebih dengan time delay yang relatif lama dan dengan voltage restrain.
Voltage Restrain
• Arus Hubung Singkat Generator turun sebagai fungsi waktu.
• Hal ini disebabkan oleh membesarnya arus stator yang melemahkan medan magnit kutub (rotor) sehingga ggl dan tegangan jepit Generator turun.
• Untuk menjamin kerjanya Relay sehubungan dengan menurunnya arus hubung singkat Generator, diperlukan Voltage Restrain Coil.
• Mengingat karakteristik hubung singkat Generator yang demikian, pada Generator besar dipakai juga Relay Impedansi.

PENGAMAN TERHADAP GANGGUAN DALAM GENERATOR
a.       Hubung singkat antar fasa
b. Hubung singkat fasa ke tanah
c. Suhu tinggi
d. Penguatan hilang
e. Arus urutan negatif
f. Hubung singkat dalam sirkit rotor
g. Out of Step
h. Over flux



Hubung singkat antar fasa

• Untuk proteksi dipergunakan relay differensial.
• Kalau relay ini bekerja maka selain mentripkan PMT generator, PMT medan penguat generator harus trip juga.
• Selain itu melalui relay bantu, mesin penggerak harus dihentikan.


Hubung Singkat Fasa – Tanah
a.       Dipakai Relay Hubung Tanah terbatas.
b. Relay ini memerintahkan
- PMT Generator Trip
- PMT Medan Penguat Mesin Penggerak berhenti (melalui Relay Bantu)
,Dc. Pada Generator yang memakai Trafo Blok Y-  sehingga arus urutan nol dari gangguan hubung tanah di luar Generator tidak masuk, bisa dipakai pula :
- Relay Tegangan yang mengukur pergeseran tegangan titik Netral terhadap tanah.
- Relay Arus yang mengukur arus titik Netral ke tanah lewat tahanan atau kumparan.

Penguatan Hilang
• Penguatan hilang atau penguatan melemah (under exitation) bisa menimbulkan pemanasan yang berlebihan pada kepala kumparan stator
• Penguatan hilang menyebabkan gaya mekanik pada kumparan arus searah rotor hilang, terjadi out of step, menjadi Generator Asinkron, timbul arus pusar berlebihan di rotor, selanjutnya rotor mengalami pemanasan berlebihan.
• Relay penguatan hilang akan mentripkan PMT Generator

Penggunaan Relay Mho
• Dalam keadaan eksitasi rendah / hilang, Generator akan mengambil daya Reaktif dari sistem.
• Oleh karenanya dipakai Relay Mho yang bekerja pada kwadran 3 dan 4 dari Kurva Kemampuan Generator.
• Perlu perhatian pada Beban Kapasitif, misalnya Saluran Kosong, Daya Reaktif akan masuk ke Generator dan menyebabkan Relay ini bekerja.
                              Hubung Singkat dalam Sirkit Rotor

Hubung singkat dalam sirkit rotor bisa menyebabkan penguatan hilang.
• Karena hubung singkat dalam sirkit rotor ini, bisa timbul distorsi medan magnet dan selanjutnya timbul getaran berlebihan.
• Cara mendeteksi gangguan sirkit rotor : Potentio Meter, AC Injection, DC Injection.

Relay Negatif Sequence
• Gangguan yang menimbulkan ketidak-simetrisan Tegangan maupun arus, menimbulkan Negatif Sequence Current, tetapi tidak dapat dideteksi oleh Relay-relay yang telah disebutkan sebelumnya, maka sebelum Negatif Sequence Current terjadi diharapkan dapat dideteksi oleh Relay ini.
• Gangguan-gangguan tersebut di atas misalnya adalah :
– Hubung Singkat antar lilitan satu fasa.
– Hubung Tanah di dekat titik Netral.
– Ada sambungan salah satu fasa yang kendor.
• Negative Sequence Current bisa menimbulkan pemanasan berlebihan pada rotor.

Gangguan Internal Generator Yang Sulit Dideteksi
1. Hubung singkat antar lilitan satu fasa, tidak terdeteksi oleh relay diferensial.
2. Hubung tanah di dekat titik Netral, tidak terdeteksi oleh relay hubung tanah terbatas.
3. Lilitan putus atau sambungan kendor, tidak terlihat oleh relay diferensial.
4. Diharapkan relay suhu dan relay Negatif Sequence bisa ikut mendeteksi dua gangguan ini.

Untuk Exciter berupa generator arus bolak balik yang memakai diode berputar, deteksi gangguan rotor hanya bisa lewat :
a. Arus medan Pilot Exciter yang melewati sikat, bisa ditap untuk diamati. Arus ini akan membesar kalau ada gangguan kumparan rotor.
b. Gangguan Kumparan rotor menimbulkan vibrasi yang bisa dideteksi oleh detektor vibrasi.

Gangguan dalam mesin penggerak
Gangguan-gangguan yang demikian adalah :
• Tekanan minyak pelumas terlalu rendah
• Suhu air pendingin atau suhu bantalan terlalu tinggi
• Daya balik,

Adakalanya gangguan dalam mesin penggerak generator memerlukan tripnya PMT Generator.

Suhu Tinggi
• Suhu tinggi bisa terjadi pada bantalan generator atau pada kumparan stator.
• Hal ini masing-masing di deteksi oleh relay suhu yang mula-mula membunyikan alarm kemudian mentripkan PMT generator dan memberhentikan mesin penggerak apabila yang bekerja adalah relay suhu bantalan.
Penyebab Suhu Tinggi
A. Lilitan Stator, penyebabnya:
1. Beban Lebih
2. Beban tidak simetris, arus urutan negatif
3. Hubung singkat yang tidak terdeteksi
4. Penguatan Hilang / Lemah
5. Ventilasi kurang baik, hidrogin bocor
6. Kotoran / debu melekat pada lilitan

B. Kumparan Rotor, penyebabnya:
1. Beban stator tidak seimbang, arus urutan negatif
2. Hubung singkat yang tidak terdeteksi
3. Out of step
4. Ventilasi kurang baik, hidrogin bocor
5. Kotoran / debu melekat pada lilitan

C. Bantalan Generator, penyebabnya:
1. Pelumasan kurang lancar, tekanannya kurang tinggi
2. Kerusakan pada bagian yang bergeseran

Tekanan minyak terlalu rendah
• Tekanan minyak pelumas yang terlalu rendah bisa merusak bantalan, oleh karenanya jika hal ini terjadi Mesin Penggerak perlu segera dihentikan melalui proses alarm terlebih dahulu apabila tekanan ini turun secara bertahap
• Berhentinya Mesin Penggerak harus bersamaan dengan tripnya PMT Generator

Suhu Air Pendingin atau Suhu Bantalan terlalu tinggi
• Sama seperti tekanan terlalu rendah
Daya Balik
Daya balik dimana generator menjadi motor dapat menimbulkan kerusakan karena pemanasan berlebihan pada sudu-sudu tekanan rendah Turbin uap. Pada Turbin air dapat meningkatkan kavitasi. Oleh karenanya diperlukan relay daya balik pada generator yang digerakkan oleh turbin uap atau turbin air dengan melalui Alarm terlebih dahulu. Untuk Turbin Gas masalahnya sama dengan untuk Turbin Uap.
Putaran Lebih
• Apabila PMT generator trip, maka akan terjadi putaran lebih yang membahayakan generator dan mesin penggeraknya.
• Untuk ini diperlukan relay putaran lebih yang memberhentikan mesin penggerak.
Tegangan Lebih
• Apabila PMT generator trip, maka bisa terjadi tegangan lebih.
• Untuk ini diperlukan relay tegangan lebih.
Tekanan dan Kebocoran Hidrogen
Untuk generator yang didinginkan dengan gas Hidrogen, harus ada relay yang mendeteksi tekanan rendah dan kebocoran Hidrogen untuk memberhentikan mesin penggerak generator dan memutus arus medan
Relay Over Fluks
Relay ini mengukur besaran volt per Hertz. Tegangan imbas volt dalam suatu kumparan adalah sebanding dengan kerapatan fluks dan frekwensi. Over fluks bisa terjadi pada Tegangan normal tetapi frekwensi rendah. Hal semacam ini
bisa terjadi pada saat menstart generator dimana frekwensi masih rendah, karena putaran Generator masih rendah, tetapi sudah ada arus penguat dari exciter. Kerapatan fluks yang tinggi ini akan menimbulkan arus pusar yang tinggi sehingga timbul pemanasan berlebihan dalam inti generator dan dalam inti trafo penaik tegangan. Begitu pula dengan rugi histerisis yang menjadi makin tinggi
apabila kerapatan fluks magnetik tinggi, hal ini ikut menambah pemanasan inti stator.

Description: Bagan+3+garis+dari+generator

Description: relai+proteksi+generator

Description: Relay+proteksi+generator-lanjutan

Mesin Sinkron


Description: induction_motor1
Hampir semua energi listrik dibangkitkan dengan memakai mesin sinkron. Generator sinkron (sering disebut alternator) adalah mesin sinkron yangdigunakan untuk mengubah daya mekanik menjadi daya listrik. Generator sinkrondapat berupa generator sinkron tiga fasa atau generator sinkron AC satu fasatergantung dari kebutuhan.
Konstruksi Generator Sinkron
Pada generator sinkron, arus DC diterapkan pada lilitan rotor untuk menghasilkan medan magnet rotor. Rotor generator diputar oleh prime mover menghasilkan medan magnet berputar pada mesin. Medan magnet putar ini menginduksi tegangan tiga fasa pada kumparan stator generator. Rotor pada generator sinkron pada dasarnya adalah sebuah elektromagnet yang besar. Kutub medan magnet rotor dapat berupa salient (kutub sepatu) dan dan non salient (rotor silinder).

 

Prinsip Kerja Generator sinkron

Setelah kita membahas di sini mengenai konstruksi dari suatu generator sinkron, maka artikel kali ini akan membahas mengenai prinsip kerja dari suatu generator sinkron. Yang akan menjadi kerangka bahasan kali ini adalah pengoperasian generator sinkron dalam kondisi berbeban, tanpa beban, menentukan reaktansi dan resistansi dengan melakukan percobaan tanpa beban (beban nol), percobaan hubung-singkat dan percobaan resistansi jangkar.

Seperti telah dijelaskan pada artikel-artikel sebelumnya, bahwa kecepatan rotor dan frekuensi dari tegangan yang dibangkitkan oleh suatu generator sinkron berbanding lurus. Gambar 1 akan memperlihatkan prinsip kerja dari sebuah generator AC dengan dua kutub, dan dimisalkan hanya memiliki satu lilitan yang terbuat dari dua penghantar secara seri, yaitu penghantar a dan a’.

Untuk dapat lebih mudah memahami, silahkan lihat animasi prinsip kerja generator, di sini.


Description: gb+1
Gambar 1. Diagram Generator AC Satu Phasa Dua Kutub.

Lilitan seperti disebutkan diatas disebut “Lilitan terpusat”, dalam generator sebenarnya terdiri dari banyak lilitan dalam masing-masing fasa yang terdistribusi pada masing-masing alur stator dan disebut “Lilitan terdistribusi”. Diasumsikan rotor berputar searah jarum jam, maka fluks medan rotor bergerak sesuai lilitan jangkar. Satu putaran rotor dalam satu detik menghasilkan satu siklus per detik atau 1 Hertz (Hz).

Bila kecepatannya 60 Revolution per menit (Rpm), frekuensi 1 Hz. Maka untuk frekuensi f = 60 Hz, rotor harus berputar 3600 Rpm. Untuk kecepatan rotor n rpm, rotor harus berputar pada kecepatan n/60 revolution per detik (rps). Bila rotor mempunyai lebih dari 1 pasang kutub, misalnya P kutub maka masing-masing revolution dari rotor menginduksikan P/2 siklus tegangan dalam lilitan stator. Frekuensi dari tegangan induksi sebagai sebuah fungsi dari kecepatan rotor, dan diformulasikan dengan:

Description: 1

Untuk generator sinkron tiga fasa, harus ada tiga belitan yang masing-masing terpisah sebesar 120 derajat listrik dalam ruang sekitar keliling celah udara seperti diperlihatkan pada kumparan a – a’, b – b’ dan c – c’ pada gambar 2. Masing-masing lilitan akan menghasilkan gelombang Fluksi sinus satu dengan lainnya berbeda 120 derajat listrik. Dalam keadaan seimbang besarnya fluksi sesaat :

ΦA = Φm. Sin ωt
ΦB = Φm. Sin ( ωt – 120° )
ΦC = Φm. Sin ( ωt – 240° )

Description: gb+2
Gambar 2. Diagram Generator AC Tiga Fasa Dua Kutub

Besarnya fluks resultan adalah jumlah vektor ketiga fluks tersebut adalah:
ΦT = ΦA +ΦB + ΦC, yang merupakan fungsi tempat (Φ) dan waktu (t), maka besar- besarnya fluks total adalah:
ΦT = Φm.Sin ωt + Φm.Sin(ωt – 120°) + Φm. Sin(ωt– 240°). Cos (φ – 240°)
Dengan memakai transformasi trigonometri dari :

Sin α . Cos β = ½.Sin (α + β) + ½ Sin (α + β ),

maka dari persamaan diatas diperoleh :

ΦT = ½.Φm. Sin (ωt +φ )+ ½.Φm. Sin (ωt – φ) + ½.Φm. Sin ( ωt + φ – 240° )+ ½.Φm. Sin (ωt – φ) +½.Φm. Sin (ωt + φ – 480°)

Dari persamaan diatas, bila diuraikan maka suku kesatu, ketiga, dan kelima
akan silang menghilangkan. Dengan demikian dari persamaan akan didapat
fluksi total sebesar, ΦT = ¾ Φm. Sin ( ωt - Φ ) Weber .

Jadi medan resultan merupakan medan putar dengan modulus 3/2 Φ dengan
sudut putar sebesar ω. Maka besarnya tegangan masing-masing fasa adalah :

E maks = Bm. ℓ. ω r Volt

dimana :

Bm = Kerapatan Fluks maksimum kumparan medan rotor (Tesla)
ℓ = Panjang masing-masing lilitan dalam medan magnetik (Weber)
ω = Kecepatan sudut dari rotor (rad/s)
r = Radius dari jangkar (meter)


Generator Tanpa Beban

Apabila sebuah mesin sinkron difungsikan sebagai generator dengan diputar pada kecepatan sinkron dan rotor diberi arus medan (If), maka pada kumparan jangkar stator akan diinduksikan tegangan tanpa beban (Eo), yaitu sebesar:
Eo = 4,44 .Kd. Kp. f. φm. T Volt

Dalam keadaan tanpa beban arus jangkar tidak mengalir pada stator, sehingga tidak terdapat pengaruh reaksi jangkar. Fluks hanya dihasilkan oleh arus medan (If). Bila besarnya arus medan dinaikkan, maka tegangan keluaran juga akan naik sampai titik saturasi (jenuh), seperti diperlihatkan pada gambar 3. Kondisi generator tanpa beban bisa digambarkan rangkaian ekuivalennya seperti diperlihatkan pada gambar 3b.

Description: gb+3
Gambar 3a dan 3b. Kurva dan Rangkaian Ekuivalen Generator Tanpa Beban


Generator Berbeban

Bila generator diberi beban yang berubah-ubah maka besarnya tegangan terminal V akan berubah-ubah pula, hal ini disebabkan adanya kerugian tegangan pada:
• Resistansi jangkar Ra
• Reaktansi bocor jangkar Xl
• Reaksi Jangkar Xa

a. Resistansi Jangkar
Resistansi jangkar/fasa Ra menyebabkan terjadinya kerugian tegang/fasa (tegangan jatuh/fasa) dan I.Ra yang sefasa dengan arus jangkar.

b. Reaktansi Bocor Jangkar
Saat arus mengalir melalui penghantar jangkar, sebagian fluks yang terjadi tidak mengimbas pada jalur yang telah ditentukan, hal seperti ini disebut Fluks Bocor.

c. Reaksi Jangkar
Adanya arus yang mengalir pada kumparan jangkar saat generator dibebani akan menimbulkan fluksi jangkar (ΦA ) yang berintegrasi dengan fluksi yang dihasilkan pada kumparan medan rotor(ΦF), sehingga akan dihasilkan suatu fluksi resultan sebesar :
Description: 3
Interaksi antara kedua fluksi ini disebut sebagai reaksi jangkar, seperti diperlihatkan pada Gambar 4. yang mengilustrasikan kondisi reaksi jangkar untuk jenis beban yang berbeda-beda.
Description: gb+4
Gambar 4a, 4b, 4c dan 4d. Kondisi Reaksi Jangkar.

Gambar 4a , memperlihatkan kondisi reaksi jangkar saat generator dibebani tahanan (resistif) sehingga arus jangkar Ia sefasa dengan GGL Eb dan ΦA akan tegak lurus terhadap ΦF.

Gambar 4b, memperlihatkan kondisi reaksi jangkar saat generator dibebani kapasitif , sehingga arus jangkar Ia mendahului ggl Eb sebesar θ dan ΦA terbelakang terhadap ΦF dengan sudut (90 -θ).

Gambar 4c, memperlihatkan kondisi reaksi jangkar saat dibebani kapasitif murni yang mengakibatkan arus jangkar Ia mendahului GGL Eb sebesar 90° dan ΦA akan memperkuat ΦF yang berpengaruh terhadap pemagnetan.

Gambar 4d, memperlihatkan kondisi reaksi jangkar saat arus diberi beban induktif murni sehingga mengakibatkan arus jangkar Ia terbelakang dari GGL Eb sebesar 90° dan ΦA akan memperlemah ΦF yang berpengaruh terhadap pemagnetan.

Jumlah dari reaktansi bocor XL dan reaktansi jangkar Xa biasa disebut reaktansi Sinkron Xs.

Vektor diagram untuk beban yang bersifat Induktif, resistif murni, dan kapasitif diperlihatkan pada Gambar 5a, 5b dan 5c.
Description: gb+5a
Description: gb+5b
Description: gb+5c
Gambar 5a, 5b dan 5c. Vektor Diagram dari Beban Generator

Berdasarkan gambar diatas, maka bisa ditentukan besarnya tegangan jatuh yang terjadi, yaitu :

Total Tegangan Jatuh pada Beban:

= I.Ra + j (I.Xa + I.XL)
= I {Ra + j (Xs + XL)}

= I {Ra + j (Xs)}

= I.Zs

Menentukan Resistansi dan Reaktansi

Untuk bisa menentukan nilai reaktansi dan impedansi dari sebuah generator, harus dilakukan percobaan (test). Ada tiga jenis test yang biasa dilakukan, yaitu:

• Test Tanpa beban ( Beban Nol )
• Test Hubung Singkat.
• Test Resistansi Jangkar.

                                            Test Tanpa Beban
Test Tanpa Beban dilakukan pada kecepatan Sinkron dengan rangkaian jangkar terbuka (tanpa beban) seperti diperlihatkan pada Gambar 6. Percobaan dilakukan dengan cara mengatur arus medan (If) dari nol sampai rating tegangan output terminal tercapai.

Description: gb+6
Gambar 6. Rangkaian Test Generator Tanpa Beban.

Test Hubung Singkat

Untuk melakukan test ini terminal generator dihubung singkat, dan dengan Ampermeter diletakkan diantara dua penghantar yang dihubung singkat tersebut (Gambar 7). Arus medan dinaikkan secara bertahap sampai diperoleh arus jangkar maksimum. Selama proses test arus If dan arus hubung singkat Ihs dicatat.

Description: gb+7
Gambar 7. Rangkaian Test Generator di Hubung Singkat.

Dari hasil kedua test diatas, maka dapat digambar dalam bentuk kurva karakteristik seperti diperlihatkan pada gambar 8.

Description: gb+8
Gambar 8. Kurva Karakteristik Tanpa Beban dan Hubung Singkat sebuah Generator.

Impedansi Sinkron dicari berdasarkan hasil test, adalah:

Description: 4, If = konstatn

Test Resistansi Jangkar

Dengan rangkaian medan terbuka, resistansi DC diukur antara dua terminal output sehingga dua fasa terhubung secara seri, Gambar 9. Resistansi per fasa adalah setengahnya dari yang diukur.

Description: gb+9
Gambar 9. Pengukuran Resistansi DC.


Dalam kenyataannya nilai resistansi dikalikan dengan suatu faktor untuk menentukan nilai resistansi AC efektif , eff R . Faktor ini tergantung pada bentuk dan ukuran alur, ukuran penghantar jangkar, dan konstruksi kumparan. Nilainya berkisar antara 1,2 s/d 1,6 .

Bila nilai Ra telah diketahui, nilai Xs bisa ditentukan berdasarkan persamaan:
Description: 5